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New Limitations

•
 

Steel area = 0.01 Ag

 

min
•

 
Rectangular HSS: 

b/t ≤ 2.26 [E/Fy]0.5 = 54.4 for 50 ksi

•
 

Round HSS:
D/t ≤ 0.15 E/Fy = 87 for 50 ksi

AISC 2005 Provisions for Composite Columns
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I2.1.2 Filled Composite Columns 
New Strength Model w/ Slenderness

AISC 2005 Provisions for Composite Columns



•
 

Typically use Plastic Stress 
Distribution Method 

Plastic Strength Equations
o

 
Example CD Disk w/ AISC Manual

•
 

For axial compression:
Square, rectangular, round HSS are in 
tables in AISC Manual for CFTs
Tabulated versus KL (effective length)
f’c = 4, 5 ksi concrete

AISC 2005 Provisions for Composite Columns



Axial force-bending moment interaction diagram

Slides from L. Griffis, Walter P. Moore & Assoc.

A

C

D

B

P-M Interaction Diagram

φMn (kip-ft)

φ P
n

(k
ip

s)

AISC 2005 Provisions for Composite Columns



A

P-M Interaction Diagram
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0.85f’c Fy

PA = As Fy + 0.85f’c Ac
MA = 0
As = area of steel shape
Ac = Ag - As
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P-M Interaction Diagram
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P-M Interaction Diagram
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P-M Interaction Diagram
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Project Goals

•
 

Facilitate use of composite systems in 
buildings up to 20 stories and in areas of low, 
moderate, and high seismicity

•
 

Develop system performance factors (e.g., R, 
Cd

 

, and Ωo

 

) for composite braced and 
unbraced

 
structural systems

•
 

Provide practical guidelines for the analysis 
and design of composite structures

•
 

Upgrade the computational models available 
for analyzing complete composite systems 
and provide detailed documentation to help 
researchers pursue similar studies



Assessment of Capacity:  Database Development for ModelingAssessment of Capacity:  Database Development for Modeling
• Worldwide test results of RCFT tests were documented:

•• Each database consists of four sections including:Each database consists of four sections including:
–– Test Description:Test Description:
–– Material Properties:Material Properties:
–– Geometric Properties:Geometric Properties:
–– Experimental Results:Experimental Results:

•• Failure modesFailure modes
•• Deformation and load capacitiesDeformation and load capacities
•• Occurrence of local damage in terms load and deformation levelsOccurrence of local damage in terms load and deformation levels

RCFT Tests
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•• Created deformationCreated deformation--based and energybased and energy--based damage functions (e.g., based damage functions (e.g., 
concrete crushing, steel yielding, local buckling)concrete crushing, steel yielding, local buckling)

•• The damage function values at specific damage levels were correlThe damage function values at specific damage levels were correlated to ated to 
the structural parameters (e.g., the structural parameters (e.g., ff’’cc

 

,  ,  ffyy
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Damage Assessment in RCFT Members and Frames

Example:  Tension flange yielding occurs
pre-peak for thick-walled RCFTs with low axial force
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A parametric study was conducted on the 
equations to estimate the range of 
probable damage function values



Database Development for Testing

•

 

Work of previous researchers 
(Leon, Goode, Morino) 
combined to create a 
comprehensive worldwide 
database

•

 

Database used to identify gaps 
in test data and calibrate 
computational model

P/Po

RCFT CCFT SRC

P/Po
P/Po

λ
λ

M/Md
M/Md

λ

M/Md

CCFT RCFT SRC

Columns 762 455 119

Beam-

 
Columns

395 189 120

Number of Tests



Gaps In Test Data

•

 

Fewer tests for slender members (λ > 1.5) 
Flexural Buckling

•

 

Fewer tests for slender sections (b/t

 

> 50) 
Local Buckling

•

 

Few with both slender members and sections
•

 

Other gaps in material properties
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MAST Facility

•

 

The MAST facility permits the 
comprehensive testing of a wide 
range of composite beam-

 
columns subjected to three 
dimensional loading at a realistic 
scale.

From NEES@Minnesota

Degree of 
Freedom

Load Stroke/ 
Rotation

X-Translation ±880 kips ±16 in

X-Rotation ±8,910 kip-ft ±7°

Y-Translation ±880 kips ±16 in

Y-Rotation ±8,910 kip-ft ±7°

Z-Translation ±1,320 kips ±20 in

Z-Rotation ±13,200 kip-ft ±10°

Maximum non-concurrent 
capacities of MAST DOFs



CFT Test Series



Preliminary SRC Test Series

Label Steel Axis f ' c F y Long. Trans. ρ L λ L/r

b (in) d (in) Section (ksi) (ksi) Reinf. Reinf. (%) (ft) √Pe/Po

SRC1 24 24 W10x49 Strong 5 50 8#8 #4@12 2.3 14 1.00 23.3

SRC2 24 24 W10x49 Strong 5 50 8#8 #4@12 2.3 20 2.00 33.3

SRC3 16 16 W10x100 Strong 5 50 8#6 #4@12 10.3 14 1.25 35.0

SRC4 16 16 W10x100 Strong 5 50 8#6 #4@12 10.3 20 2.50 50.0

SRC5 16 16 W10x100 Weak 5 50 8#6 #4@6 10.3 14 1.25 35.0

SRC6 16 16 W10x100 Biaxial 5 50 8#6 #4@12 10.3 20 2.50 50.0

SRC7 16 16 W10x100 Strong 8 65 8#6 #4@12 10.3 20 2.50 50.0

SRC8 16 16 W10x100 Strong 12 65 8#6 #4@12 10.3 20 2.50 50.0

RC Section



Load Histories

•
 

Proportional; Non-proportional; Non-symmetric

From AISC 2005M

P

Strain C.

Plastic

2005Simp.
Axial capacity of MAST System
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Assessment of Demand:  Computational ModelingAssessment of Demand:  Computational Modeling
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A 3D 18 DOF Beam-Column element was formulated:

•

 

Separate translational DOFs

 

for steel 
tube and concrete core were defined

•

 

Differential displacement allowed in 
the axial direction

•

 

Distributed plasticity fiber formulation:  stress and 
strain modeled explicitly at each fiber of cross section

•

 

Suitable for static and transient dynamic analysis

slip
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•

 

Implemented in OpenSEES



Physical Characteristics of Rectangular Physical Characteristics of Rectangular CFTsCFTs

Cyclic Behavior of RCFT membersCyclic Behavior of RCFT members

Elastic Unloading concrete + steel

Decreasing Elastic Zone concrete + steel

Strength Degradation concrete + steel

Bauschinger Effect steel

Gradual Stiffness Reduction   concrete + steel

Bounding Stiffness steel

Softening concrete + steel

Sakino and Tomii (1981)

Slip (mm)

Shakir-Khalil 
(1993)
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Concrete Constitutive FormulationConcrete Constitutive Formulation

•

 

Cyclic constitutive model proposed by Chang and Mander

 

(1994) 
was adapted and modified extensively to simulate strain vs. stress 
response of concrete

Accounts for confinement implicitly through slope of softening 
branch

Tension stiffening

Cycle into tension 
and back into 
compression

Robust 
formulation at 
section iteration 
level to capture 
softening

-25

-15

-5

5

-0.008 -0.006 -0.004 -0.002 0 0.002

Strain 

S
tre

ss
 (M

P
a)



0

5

10

15

20

25

30

35

0 0.002 0.004 0.006 0.008

Experiment
Computation

0

5

10

15

20

25

0 0.002 0.004 0.006 0.008

Experiment

Computation

0

30

60

90

0 0.01 0.02 0.03 0.04 0.05

Experiment
Computation

0

5

10

15

20

25

30

0 0.002 0.004 0.006 0.008

Experiment
Computation

Strain

S
tre

ss
 (M

P
a)

Strain

S
tre

ss
 (M

P
a)

Strain

S
tre

ss
 (M

P
a)

Strain

S
tre

ss
 (M

P
a)

Karsan and Jirsa 
(1964)

Sinha et al. 
(1969)

Calibration of Concrete Constitutive FormulationCalibration of Concrete Constitutive Formulation

Mander et al. (1984)

Okamato (1976)
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Steel Constitutive FormulationSteel Constitutive Formulation

• Cyclic constitutive model proposed by Mizuno at el. (1992) was 
adapted and modified to simulate strain vs. stress response of cold- 
formed steel tube

• Uniaxial bounding surface model with local buckling

Bounding Surface



Calibration of Steel Constitutive FormulationCalibration of Steel Constitutive Formulation
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Cantilever:Cantilever:

LL--Frame:Frame:

M

L = 1 inch    A = 1000 inch2

I = 1 inch4 E = 1 ksi

3 elements

Verification of RCFT BeamVerification of RCFT Beam--Columns:  Geometric NonlinearityColumns:  Geometric Nonlinearity
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Axially Loaded RCFT ColumnsAxially Loaded RCFT Columns
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RCFT BeamRCFT Beam--ColumnsColumns

• Proportionally Loaded Columns:

• Non-Proportionally Loaded Columns:
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ThreeThree--Dimensional Verification of RCFT ResponseDimensional Verification of RCFT Response
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Kawaguchi, 2000

Specimen

21C30C
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RCFT Frame Response:  PseudoRCFT Frame Response:  Pseudo--Dynamic ExperimentDynamic Experiment
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Computational Modeling of Computational Modeling of RCFTsRCFTs
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Computational Model

•

 
Extending now to circular CFTs

 
and SRCs
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Upcoming:  Parametric Studies

•
 

Parametric studies will be performed 
to document the performance limit 
states of composite systems, leading 
to the development of new 
recommendations for non-seismic and 
seismic design of composite beam-

 columns. 



Upcoming:  Equivalent Stiffness for AISC

•
 

A simplified, mechanistically based equation 
for the prediction of the equivalent 
stiffness, EIeq

 

, of composite beam-columns 
will be developed. 

•
 

Equations similar to the current ones for 
buckling of composite sections in the 2005 
AISC Specification will be derived.

EIeff

 

= Es

 

Is

 

+ 0.5 Es

 

Isr

 

+ C1

 

Ec

 

Ic
where C1

 

is a simple parameter based on the reinforcement 
ratio.



Upcoming:  System Performance Factors

•
 

Rational system performance factors (e.g., 
R, Cd

 

, and Ωo

 

) will be developed. 
•

 
Currently, they are based on a perceived 
equivalence to either concrete or steel 
systems.
Seismic-Force-Resisting Systems R Ωo Cd

Composite eccentrically braced frames 8 2 ½ 4

Composite concentrically braced frames 5 2 4 ½

Ordinary composite braced frames 3 2 3

Special composite moment frames 8 3 5 ½

Intermediate composite moment frame 5 3 4 ½

Ordinary composite moment frame 3 3 2 ½
FEMA 450-1/2003 Edition


	New Developments in �Earthquake Engineering of �Steel and Composite Structures
	Outline
	COMPOSITE SEISMIC DESIGN
	Composite Columns
	Acknowledgements:  Composite Systems
	AISC 2005 Provisions for Composite Columns
	AISC 2005 Provisions for Composite Columns
	AISC 2005 Provisions for Composite Columns
	AISC 2005 Provisions for Composite Columns
	AISC 2005 Provisions for Composite Columns
	AISC 2005 Provisions for Composite Columns
	AISC 2005 Provisions for Composite Columns
	Slide Number 13
	AISC 2005 Provisions for Composite Columns
	Project Goals
	Assessment of Capacity:  Database Development for Modeling
	Slide Number 17
	Database Development for Testing
	Gaps In Test Data
	MAST Facility
	CFT Test Series
	Slide Number 22
	Load Histories
	Assessment of Demand:  Computational Modeling
	Cyclic Behavior of RCFT members
	Concrete Constitutive Formulation
	Calibration of Concrete Constitutive Formulation
	Slide Number 28
	Slide Number 29
	Verification of RCFT Beam-Columns:  Geometric Nonlinearity
	Axially Loaded RCFT Columns
	Slide Number 32
	Three-Dimensional Verification of RCFT Response
	RCFT Frame Response 
	RCFT Frame Response:  Steel Stress-Strain Curves 
	RCFT Frame Response:  Concrete Stress-Strain Curves 
	RCFT Frame Response:  Pseudo-Dynamic Experiment
	Computational Modeling of RCFTs
	Computational Model	
	Upcoming:  Parametric Studies
	Upcoming:  Equivalent Stiffness for AISC
	Upcoming:  System Performance Factors



